Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Article En | MEDLINE | ID: mdl-38567708

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
2.
Pharmaceuticals (Basel) ; 16(8)2023 08 01.
Article En | MEDLINE | ID: mdl-37631007

Since ancient times, many scientists and doctors have used various herbs to treat diseases. Conventional drugs often have side effects, and pathogens are becoming resistant to these types of drugs. In such circumstances, the study of traditional medicinal plants is an effective and logical strategy for finding new herbal medicines. One such herb is Plantago major, a perennial plant in the Plantaginaceae family that is found throughout the world. The Plantago major plant has been used as a medicine for the treatment of various diseases. Studies have shown that plant extracts of Plantago major exhibit antimicrobial, antiviral, and anti-inflammatory effects, and have wound-healing properties. This review collects and presents the results of various studies of Plantago major plant extracts with antimicrobial, antiviral, antifungal, anti-inflammatory, and wound-healing properties, which demonstrate a wide range of therapeutic possibilities of Plantago major plant extracts and have a huge potential for use as a medicinal raw material.

3.
Biomed Res Int ; 2022: 9349897, 2022.
Article En | MEDLINE | ID: mdl-35281611

MicroRNA (miRNA), a noncoding ribonucleic acid, is considered to be important for the progression of gene expression in plants and animals by rupture or translational repression of targeted mRNAs. Many types of miRNA regulate plant metabolism, growth, and response to biotic and abiotic factors. miRNA characterization helps to expose its function in regulating the process of post-transcriptional genetic regulation. There are a lot of factors associated with miRNA function, but the function of miRNA in the organic synthesis of by-products by natural products is not yet fully elucidated. The current review is aimed at observing and characterizing miRNAs and identifying those involved in the functioning of the biosynthesis of secondary metabolites in plants, with their use in controlled manipulation.


MicroRNAs , Animals , Gene Expression Regulation/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Plants/genetics , Plants/metabolism , RNA, Messenger/genetics
4.
Oxid Med Cell Longev ; 2021: 9068850, 2021.
Article En | MEDLINE | ID: mdl-34754365

Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.


Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
5.
Front Mol Biosci ; 8: 649395, 2021.
Article En | MEDLINE | ID: mdl-34540888

Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.

...